Looking Forward in 2019

The Village of Tequesta Water Department is committed to delivering the highest quality water to our community. We have always taken a proactive approach in the maintenance and improvements of the Water Plant. This helps maintain the superior quality of water delivered to your home and businesses.

In 2019 the water plant will improve the existing filter plant operations. The project includes the replacement and installation of a new Process Control Panel. The panel will include new technology for controlling the filter plant operations. This is comprised of remote monitoring equipment, programmable logic controllers, push buttons for each motor operated valve, and all new flow meters and transmitters.

The existing Motor Control Center for the filter plant will be removed and replaced with new state-of-the-art electrical equipment. This equipment is more efficient and allows for safe and reliable electric power in the plant. The existing Acid and Caustic Tanks will be replaced as well in 2019, as a part of our ongoing Capital Improvement Plan.

Prize-Winning Water

Tequesta’s Water Treatment Facility has been honored in past years by regional, state and national organizations for the first-rate quality of the operation.
- Southeast Desalting Association Membrane Plant Award Outstanding Class B Water Treatment Plant, 2004.

The Water Utilities Department is pleased to present to you our 2018 Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

The Village of Tequesta’s Utilities Department works diligently to protect this essential resource, and to preserve and enhance the system that delivers water to your home or business. I urge you to take a minute to look through this report; learn about your water system and some of what goes into delivering water to your tap. We are pleased to report that our drinking water meets all federal and state requirements.

To ensure the water meets these standards, the water quality analyses are performed by licensed water plant technicians. The samples are reviewed and validated by a quality assurance officer to make certain the quality and consistency of our methods are met. On average, the staff prepares and quantifies 10-15 water samples, 7 days a week, 365 days a year for compliance and quality monitoring. We are fortunate that the Village of Tequesta’s water is some of the highest-quality drinking water in the State Florida.

This report shows our water quality results and what they mean.

If you have questions or comments about this report, please call the Water Treatment Plant at 561-768-0490.

Nathan Litteral,
Water Plant Superintendent

Our Mission:

Provide responsive, courteous and quality service in order to achieve customer satisfaction and improve the quality of life for the citizens of the Village of Tequesta and its other customers.

Develop a long-range strategic plan to meet future infrastructure and utility service needs for community growth, development, and expansion.

Enhance public awareness of environmental surroundings.

Village of Tequesta Leadership

VILLAGE COUNCIL:
Abby Brennan, Mayor
Kristi Johnson, Vice-Mayor
Laurie Brandon, Council Member
Kyle Stone, Council Member
Vince Arena, Council Member

VILLAGE STAFF:
James Weinand, Acting Village Manager
Nathan Litteral, Water Plant Superintendent

The Village Council meets monthly dates and times are posted on www.tequesta.org
The Water Treatment Plant receives its raw water from 14 production wells. The Filter Plant which is supplied by 10 surficial aquifer wells, physically and chemically treats the well water to produce potable water, which meets and exceeds the standards of the Safe Drinking Water Act. The Reverse Osmosis Water Treatment Plant provides the desalination of brine water from 4 wells nearly 1800 feet down into the Floridian Aquifer. The process includes oxidation, filtration, and disinfection by chlorination.

Where does our water come from?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. To ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Do I Need To Take Special Precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population, Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines are available from the Safe Drinking Water Hotline (800-426-4791).

The effects of lead in drinking water on children

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Tequesta is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

YEAR 2018 TEST RESULTS • VILLAGE OF TEQUESTA

The Village of Tequesta routinely monitors for contaminants in our drinking water according to Federal and State laws, rules and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 01, 2018 to December 31, 2018. Data obtained before January 01, 2018, and presented in this report, are from the most recent testing done in accordance with the laws, rules and regulations.

CONTAMINANT AND UNIT OF MEASUREMENT

<table>
<thead>
<tr>
<th>Contaminant and</th>
<th>Dates of sampling</th>
<th>MCL Violation</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG or MRLG</th>
<th>MCL or MRL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>5/18</td>
<td>N</td>
<td>0.04</td>
<td>0.04</td>
<td>< 1</td>
<td>1</td>
<td>Run-off from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>5/18</td>
<td>N</td>
<td>0.13</td>
<td>0.13</td>
<td>< 10</td>
<td>10</td>
<td>Run-off from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits</td>
</tr>
</tbody>
</table>

Stage 2 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Date of Sampling (mo/yr)</th>
<th>MCL Violation</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG or MRLG</th>
<th>MCL or MRL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (ppm)</td>
<td>Quarterly 2018</td>
<td>N</td>
<td>2.25</td>
<td>0.6 – 3.30</td>
<td>< 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA) (ppb)</td>
<td>Quarterly 2018</td>
<td>N</td>
<td>27.48</td>
<td>7.8 – 45.4</td>
<td>< 60</td>
<td>60</td>
</tr>
<tr>
<td>Trihalomethanes (THM) (ppb)</td>
<td>Quarterly 2018</td>
<td>N</td>
<td>40.65</td>
<td>31.7 – 56.8</td>
<td>< 80</td>
<td>80</td>
</tr>
</tbody>
</table>

Lead and Copper (Tap Water)

<table>
<thead>
<tr>
<th>Date of Sampling (mo/yr)</th>
<th>AL Exceeded</th>
<th>90th Percentile Result</th>
<th>No. of Sampling sites exceeding the AL</th>
<th>MCLG</th>
<th>AL (Action Level)</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>7/18 – 8/18</td>
<td>N</td>
<td>0.58</td>
<td>0</td>
<td>< 1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>7/18 – 8/18</td>
<td>N</td>
<td>2.10</td>
<td>0</td>
<td>< 15</td>
<td>15</td>
</tr>
</tbody>
</table>

AL = Action Level The concentration of a contaminant above which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCLG = Maximum Contaminant Level Goal The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG’s allow for a margin of safety.

MCL = Maximum Contaminant Level The highest level of a contaminant that is allowed in drinking water. MCL’s are set as close to the MCLG’s as feasible using the best available treatment technology.

MCLG = Maximum Contaminant Level Goal The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG’s allow for a margin of safety.

ND = Not detected

PDP = Parts per billion (ppb) or Micrograms per liter (µg/l)

PPM = Parts per million (ppm) or Milligrams per liter (mg/l)

MRLG = Maximum Residual Level Goal

MRL = Maximum Residual Level

VILLAGE OF TEQUESTA WATER TREATMENT FACILITY